
AUTOMATED ALIGNMENT FOR EQUIVALENCE CHECKING

Ameer Hamza and Grigory Fedyukovich
Florida State University, Tallahassee, FL, USA

AUTOMATED ALIGNMENT FOR EQUIVALENCE CHECKING

Ameer Hamza and Grigory Fedyukovich
Florida State University, Tallahassee, FL, USA

Introduction

• Compilers need verification

• Need to prove equivalence of the source and the target

• Lockstep composition (requires the same number of steps) is a
common approach

• Lockstep composition does not work for complex optimizations

• Our idea: preprocees (align) the source and the target such that
lockstep composition is applicable

Vectorization Example

Given:

1. Source program

2. Target (vectorized) program

3. A precondition (on inputs): a=c, b=d, M=N

4. A postcondition (on outputs): a=c, b=d, M=N

Goal:

• Check that the programs are equivalent w.r.t. pre/post-condition

assume (M > 0);

int i = 0;

while(i < M*4-1) {

if (b[0] > 0)

a[i] = a[i+1] + b[i];

i++;

}

assume (N > 0);

if (d[0] > 0) {

c[0] = c[1] + d[0];

c[1] = c[2] + d[1];

}

int j = 2;

while(j < N*4-2) {

if (d[0] > 0) {

c[j] = c[j+1] + d[j];

c[j+1] = c[j+2] + d[j+1];

c[j+2] = c[j+3] + d[j+2];

c[j+3] = c[j+4] + d[j+3];

}

j += 4;

}

if (d[0] > 0)

c[N*4-2] = c[N*4-1] + d[N*4-2];

Programs are not lockstep-composable because:

• Number of iterations are not the same

• Target contains some code before and after the loop

Solution:

1. Create a batch of 4 iterations inside the source loop

2. Move 2 iterations before the loop, 1 iteration after the loop in the
source

3. Create a lockstep-composition and reduce to safety verification.

Relational Verification

Given:

1. Two transition systems (i.e., single-loop prorams)

2. A relational precondition pre

3. A relational postcondition post

4. Challenge: Systems are not necessarily in lockstep

Goal:

• Check if post holds after both programs begin with pre and terminate

Relational Verification ∼= Lockstep Composition + Safety of Product

For Equivalence Checking,
pre : pairwise equality of inputs post : pairwise equality of outputs

Our Approach

Given:

1. Source program

2. 3-phased target program

• a pre-phase: represents few initial iterations
• a main-phase: represents the iterating part of the transition system
• a post-phase: represents few final iterations

3. A precondition pre

4. A postcondition post

Algorithm:

• Rearrange iterations in the source, given three parameters ℓ,𝑚, 𝑛

– move ℓ iterations before the loop
– create a batch of 𝑚 iterations inside the loop
– move 𝑛 iterations after the loop

• Create a product of two programs in lockstep composition, w.r.t.

– a relational precondition 𝜋: strongest postcondition of pre and initial
iterations in both programs

– a relational postcondition 𝜑: weakest precondition of post and final
iterations in both programs

Integers ℓ,𝑚, 𝑛 can be computed by:

• Estimation of the number of iterations in both programs symbolically

• Solving a first-order logic formula relating number of iterations, a
model to which provides info about ℓ,𝑚, 𝑛 values

Updating the Source (schema)

Reduction to Safety Verification

Given:

1. A product program in lockstep composition

2. Relational pre/post-conditions 𝜋 and 𝜑

Goal:

• Check that if initially 𝜋 holds, then 𝜑 holds in the end (i.e., find safe
inductive invariants); or find a counter-example

• If 𝜑 holds, report EQUIVALENT, othewise report NONEQUIVALENT

Evaluation

• ALIEN tool implemented on top of invariant synthesizer FREQ-
HORN [1]

• Evaluated on 79 benchmarks from the Test Suite of Vectorization
Compilers (TSVC) [2]

• All benchmarks contain a single loop, and (possibly, several) array(s).

• ALIEN solved 79 out of 80 benchmarks.

• Minimum time: 0.74s, maximum time: 12.35s, and average time:
2.32s.

References

[1] Grigory Fedyukovich et al. “Quantified Invariants via Syntax-Guided Synthesis”. In:
CAV, Part I. Vol. 11561. LNCS. Springer, 2019, pp. 259–277.

[2] Saeed Maleki et al. “An Evaluation of Vectorizing Compilers”. In: 2011 Interna-
tional Conference on Parallel Architectures and Compilation Techniques. IEEE. 2011,
pp. 372–382.


