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Introduction

• Compilers need verification

• Need to prove equivalence of the source and the target

• Lockstep composition (requires the same number of steps) is a
common approach

• Lockstep composition does not work for complex optimizations

• Our idea: preprocees (align) the source and the target such that
lockstep composition is applicable

Vectorization Example

Given:

1. Source program

2. Target (vectorized) program

3. A precondition (on inputs): a=c, b=d, M=N

4. A postcondition (on outputs): a=c, b=d, M=N

Goal:

• Check that the programs are equivalent w.r.t. pre/post-condition

assume (M > 0);

int i = 0;

while(i < M*4-1) {

if (b[0] > 0)

a[i] = a[i+1] + b[i];

i++;

}

assume (N > 0);

if (d[0] > 0) {

c[0] = c[1] + d[0];

c[1] = c[2] + d[1];

}

int j = 2;

while(j < N*4-2) {

if (d[0] > 0) {

c[j] = c[j+1] + d[j];

c[j+1] = c[j+2] + d[j+1];

c[j+2] = c[j+3] + d[j+2];

c[j+3] = c[j+4] + d[j+3];

}

j += 4;

}

if (d[0] > 0)

c[N*4-2] = c[N*4-1] + d[N*4-2];

Programs are not lockstep-composable because:

• Number of iterations are not the same

• Target contains some code before and after the loop

Solution:

1. Create a batch of 4 iterations inside the source loop

2. Move 2 iterations before the loop, 1 iteration after the loop in the
source

3. Create a lockstep-composition and reduce to safety verification.

Relational Verification

Given:

1. Two transition systems (i.e., single-loop prorams)

2. A relational precondition pre

3. A relational postcondition post

4. Challenge: Systems are not necessarily in lockstep

Goal:

• Check if post holds after both programs begin with pre and terminate

Relational Verification ∼= Lockstep Composition + Safety of Product

For Equivalence Checking,
pre : pairwise equality of inputs post : pairwise equality of outputs

Our Approach

Given:

1. Source program

2. 3-phased target program

• a pre-phase: represents few initial iterations
• a main-phase: represents the iterating part of the transition system
• a post-phase: represents few final iterations

3. A precondition pre

4. A postcondition post

Algorithm:

• Rearrange iterations in the source, given three parameters ℓ,𝑚, 𝑛

– move ℓ iterations before the loop
– create a batch of 𝑚 iterations inside the loop
– move 𝑛 iterations after the loop

• Create a product of two programs in lockstep composition, w.r.t.

– a relational precondition 𝜋: strongest postcondition of pre and initial
iterations in both programs

– a relational postcondition 𝜑: weakest precondition of post and final
iterations in both programs

Integers ℓ,𝑚, 𝑛 can be computed by:

• Estimation of the number of iterations in both programs symbolically

• Solving a first-order logic formula relating number of iterations, a
model to which provides info about ℓ,𝑚, 𝑛 values

Updating the Source (schema)

Reduction to Safety Verification

Given:

1. A product program in lockstep composition

2. Relational pre/post-conditions 𝜋 and 𝜑

Goal:

• Check that if initially 𝜋 holds, then 𝜑 holds in the end (i.e., find safe
inductive invariants); or find a counter-example

• If 𝜑 holds, report EQUIVALENT, othewise report NONEQUIVALENT

Evaluation

• ALIEN tool implemented on top of invariant synthesizer FREQ-
HORN [1]

• Evaluated on 79 benchmarks from the Test Suite of Vectorization
Compilers (TSVC) [2]

• All benchmarks contain a single loop, and (possibly, several) array(s).

• ALIEN solved 79 out of 80 benchmarks.

• Minimum time: 0.74s, maximum time: 12.35s, and average time:
2.32s.
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