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Abstract. Equivalence checking of two programs is often reduced to
the safety verification of a so-called product program that aligns the
programs in lockstep. However, this strategy is not applicable when pro-
grams have arbitrary loop structures, e.g., the numbers of loops vary. We
introduce an automatic iterative abstraction-refinement-based technique
for checking equivalence of a single-loop program and a program which
has a series of consecutive loops. Our approach decomposes the single
loop into a sequence of separate loops thus reducing the main problem
to a series of equivalence-checking problems for pairs of loops. Since due
to the decomposition, these problems become abstract, our approach it-
eratively refines the decomposed loops and lifts useful information across
them. Our second contribution is a procedure for the alignment of loops
with counters and explicit bounds that cannot be composed in lockstep.
We have implemented the approach and successfully evaluated it on two
suites, one with benchmarks containing different numbers of loops and
the other containing benchmarks that need alignment.

1 Introduction

To gain performance benefits, optimizing compilers perform program transfor-
mations such as loop peeling, loop unrolling, loop unswitching. The reliance on
many transformations lowers the trust in the computation and motivates us to
use automated SMT-based verification to verify equivalence of the program be-
fore and after the transformation. Specifically, one should prove that for any
equal inputs to both programs, their outputs are equal too. The problem is of-
ten reduced to construction of a product program by aligning (or merging) the
instructions in lockstep and then determining if the product program meets a
safety specification represented by the original relational specification. While ef-
fective for many pairs of programs that are relatively close to each other, this
strategy may be insufficient for pairs of loopy programs with arbitrary control
flow. We target the verification of pairs of programs in which the source program
has a single loop, and the target program has a sequence of non-nested loops.
Such programs have been extensively studied in the literature [4,23,31] but still
are challenging for automated reasoning.

Before proving equivalence, our approach decomposes the loop in the source
program into multiple loops such that the structure of this new loop exactly
matches the one in the target program. With two structurally similar programs
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at hand, our approach targets pairs of loops and creates a lockstep composition
for each pair. This lets us break our equivalence checking problem into smaller
isolated problems, and if each such problem is successfully solved, then the given
programs are indeed equivalent. An obvious downside of decomposition is the
loss of context: if a program property is defined before the first loop, it may
not be available for the second and later loops. For that reason, we have to
refine the decomposition by extracting the requested properties in the previously
considered pairs of loops and pulling them to the currently-considered loops.
Technically, this process is driven by counterexamples.

Moreover, when attempting to create a lockstep composition for loops that
have different numbers of iterations, we might need to align them. When our
method can compute an exact number of iterations of both the source and the
target, it rearranges the control flow in the source by grouping the iterations in
the loop, and extracting selected iterations to either before the loop or after. Such
rearranging helps with programs where the number of iterations of one loop is a
multiple of other, or is off by few iterations, which is common for optimizations
including loop vectorization and loop peeling.

We implemented our equivalence checking algorithm, along with the algo-
rithms to refine and align the loops, in a tool called Alien. On many commonly
used public benchmarks [23], Alien is an order of magnitude faster than the
most recent (to our knowledge) state-of-the-art tool Counter [14]. Alien can
prove equivalence of pairs of user-written programs and it is not bound to any
particular compiler unlike many related tools based on translation validation.

We proceed with an overview of the related work in Sect. 2 and a motivating
example in Sect. 3. Then, we formally introduce our problem in Sect. 4. The
main ingredients of our algorithm are then discussed in Sect. 5, and in Sect. 6.
The evaluation is reported in Sect. 7, and conclusion in Sect. 8.

2 Related Work

Relational verification aims at analyzing two different programs or two execu-
tions of the same program. This research field has been extensively studied,
but since it reduces to safety verification, it is known to be undecidable in gen-
eral. Relational verification has applications in checking program equivalence,
information-flow leakage, incremental verification, etc. To reduce to safety, it is
a common practice to convert the programs into a product. The product can be
used for relational verification tasks by providing appropriate relational precon-
dition and postcondition. This research trend is pioneered by Barthe et al. [3]
who used product programs in Hoare-style proving. More recently, there has
been a rise of automated product construnction techniques. e.g., [7, 16,25,26].

Creating product program requires that the two programs can be composed
in some way, which is usually assumed to be trivial (e.g., lockstep), or provided
to the verifier in some form. However, it is not always possible to get the triv-
ial composition. The technique presented by Strichman et al. [36] extends the
work of Godlin et al. [12] and it attempts to prove equivalence of two recursive
functions having different base-cases and no lockstep composition, by creating
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an alignment between them. However, the alignment is done using unrolling fac-
tors, which are manually provided by the user, for both programs. The technique
presented in [34] targets self-composition. It computes a scheduler for an asyn-
chronous execution of both programs using counterexamples and a selection of
predicates (e.g., from the user). A more recent work [38] is also a scheduler-driven
but mainly targets mutual termination rather than full functional equivalence.

Translation validation techniques, [9, 17, 20, 22, 27, 28, 32, 35, 39], relate the
source programs with their compiler outputs to check equivalence. However, it
is usually the case that the compiler provides the manner of composition. Many
data-driven techniques for proving equivalence, like [5,33], rely on finding a trace
alignment between concrete executions of the programs. Such techniques might
perform inefficiently when sufficient number of execution traces are not available.
They might also require a lot of time for the data runs. The work in [22] performs
bounded translation validation at the level of LLVM intermediate representation.
The technique looks for a subset of behaviors of the source program in the target
to infer equivalence. As the technique is bounded, it may not be sound.

The work by Gupta et al. [14] presents a counterexample-guided algorithm
for translation validation of given programs. It explores the space of potential
products to find a bisimulation relation between intermediate program locations
of the two programs. and prove it via the generation of strong enough inductive
invariants. Again, while making the approach flexible, reliance on counterex-
amples makes it slower, and as we will see from our evaluation (Sect. 7), this
approach does not scale well in the cases an alignment needs larger unrollings.

Many techniques use relational verification for regression verification, where
two versions of a program are compared for equivalence checking [1, 2, 11, 13,
15, 19, 24, 30, 36, 37]. Such techniques usually assume that two programs are
closely related, hence the analysis is usually reduced by either pruning out or
abstracting common parts of the programs. Many techniques simplify the process
of equivalence checking. Some assume a static relationship between the number
of iterations of two loops, in order to prove equivalence [6, 11, 21, 29, 33]. Other
techniques create finite unrollings of loops and prove equivalence until a certain
bound, e.g., [1,18,22,30]. Our work makes an attempt to relax such assumptions.

3 Illustration on Example

Fig. 1 gives two C programs, the source program contains a single loop and
the optimized target programs contains two sequential loops. Our approach aims
at proving the equivalence of the source and the target, that is, if variables are
initially given equal values (a = c, b = d, M = X, K = Y), then their values
at the end are equal too. A lockstep composition on the programs in Fig. 1 is
challenging to construct: 1) it is difficult to compare one loop with two sequential
loops, and 2) there are different numbers of iterations taken by programs.

Our method decomposes the source loop into two loops to make it easier to
create a product program. It creates two copies of the loop in the source with
the same loop body but different loop guards, shown in Fig 2 (left). Specifically,
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1 int M = nondet(), K = nondet(),
2 a = 0, N = 2*M+1+K, b = 2*M+1;
3 assume(M >= 0 && K >= 0);
4 while(a != N) {
5 b = (a >= b) ? b + 1 : b;
6 a++;
7 }

1 int X = nondet(), Y = nondet(),
2 c = 1, d = 2*X+1;
3 assume(X >= 0 && Y >= 0);
4 while(c < 2*X+1) c+=2;
5 while(c != 2*X+1+Y) {
6 d++;
7 c++;
8 }

Fig. 1: Source (left) and target (right) programs.

1 int M = nondet(), K = nondet(),
2 a = 0, N = 2*M+1+K, b = 2*M+1;
3 assume(M >= 0 && K >= 0);
4 while(a != N && a < 2*M+1) {
5 b = (a >= b) ? b + 1 : b;
6 a++;
7 }
8 while(a != N) {
9 b = (a >= b) ? b + 1 : b;

10 a++;
11 }

1 int M = nondet(), K = nondet(),
2 a = 0, N = 2*M+1+K, b = 2*M+1;
3 assume(M >= 0 && K >= 0);
4 b = (a >= b) ? b + 1 : b; a++;
5 while(a != N && a < 2*M+1) {
6 b = (a >= b) ? b + 1 : b; a++;
7 b = (a >= b) ? b + 1 : b; a++;
8 }
9 assume(N == 2*M+1+K && b == 2*M+1);

10 while(a != N) {
11 b = (a >= b) ? b + 1 : b; a++; }

Fig. 2: Decomposed (left) and refined (right) source programs.

it uses the loop guard for the first loop in the target program, i.e. c < 2*X+1, to
create a < 2*M+1 and add it to the guard of the first source loop. It then checks
the equivalence of pairs of loops from the decomposed source and the target.
However, the first pair of loops (lines 4-7 in the decomposed source, line 4 in
the target) is not in lockstep, as for each iteration of the target, the source is
expected to iterate twice. Thus, we attempt to construct a lockstep composition
by grouping two iterations of the first loop in the decomposed source. However,
this results in some residual iterations to be processed before the loop in the
decomposed source. After conducting an analysis on the initial states of both
loops and the body of the source loop, our approach moves one iteration to
be before the loop in the source. This is sufficient to complete the lockstep
composition and prove that the first pair of loops are equivalent.

Similarly, the approach considers the second pair of loops (lines 8-11 in the
decomposed source, lines 5-8 in the target). To prove that the loops are in lock-
step we are missing the information that N = 2*M+1+K and b = 2*M+1, which is
available at the beginning of the program, but not in the middle of it. We say
that these equalities refine the composition of the second loops, and they are
added as an assumption before the start of the second loop (the refined source
program is given in Fig. 2 (right)). The refinement makes it possible to both cre-
ate the lockstep composition and prove the equivalence of both pairs of loops.
The analysis terminates with the verdict that both programs are equivalent.

4 Preliminaries

We follow the Satisfiability Modulo Theories (SMT) background and notation
to present the contributions. The goal of SMT is either to find an assignment
to variables of a first-order logic formula that makes it true (written 𝑚 |= 𝜙,
where 𝑚 is a model, and 𝜙 is a formula), or prove its non-existence (also called
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unsatisfiability, denoted 𝜙 =⇒ ⊥). For formulas 𝜙,𝜓, if every model of 𝜙 satisfies
𝜓, we say that 𝜙 is logically stronger than 𝜓 (written 𝜙 =⇒ 𝜓). We write ite
for an if-then-else.

4.1 Constrained Horn Clauses

Throughout the paper, we use the notion of Constrained Horn Clauses (CHCs)
as a mean to represent the programs containing arbitrary number of loops.

Definition 1. A Constrained Horn Clause C over a set of uninterpreted relation
symbols 𝑅 is a (universally quantified, implicitly) formula in first-order logic that
has the form of one of the three implications (namely a fact, an inductive clause
and a query, respectively):

𝜑(V1) =⇒ 𝐿1(V1) 𝐿1(V1) ∧ . . . ∧ 𝐿𝑛(V𝑛) ∧ 𝜓(V1, . . . ,V𝑛+1) =⇒ 𝐿𝑛+1(𝑉𝑛+1)

𝐿1(V1) ∧ . . . ∧ 𝐿𝑘(V𝑘) ∧ 𝜋(V1, . . . ,V𝑘) =⇒ ⊥

where for all 𝑖, 𝐿𝑖 ∈ 𝑅 are uninterpreted predicate symbols, V𝑖 are implicitly
quantified vectors of variables, and some 𝐿𝑖 and 𝐿𝑗 might be the same. All
formulas 𝜑, 𝜓, 𝜋 are fully interpreted.

Throughout, we assume that each single loop is represented by two CHCs, e.g.:

Init(V ) =⇒ 𝐿(V ) 𝐿(V ) ∧GTr(V ,V ′) =⇒ 𝐿(V ′)

where, Init represents the initial state of the loop, GTr(V ,V ′) represents one
iteration of the loop, which we call a guarded transition. For convenience, we split
GTr(V ,V ′) to Tr(V ,V ′)∧𝐺(V ), where 𝐺 encodes a guard over the variables at
the beginning of transition, and Tr has no additional guard.

Definition 2. Given a set 𝑅 of uninterpreted predicates and a set 𝐻 of CHCs
over 𝑅, we say that 𝐻 is satisfiable if there exists an interpretation for every
𝐿 ∈ 𝑅 that makes all implications in 𝐻 valid.

Solutions for CHC systems are called inductive invariants. If a CHC system
is unsatisfiable, there exists a counterexample showing a bad state is reachable.

4.2 Relational Verification

The problems of equivalence checking and lockstep composability are the in-
stances of a more general problem of relational verification. In this section, we
introduce it in a simple case for two systems containing a single loop each.

Definition 3. Given two single-loop CHC systems over 𝐿{1,2} ∈ 𝑅 with ini-
tial states Init{1,2} and guarded transition bodies GTr{1,2}, resp., a relational
precondition pre and a relational postcondition post , the problem of relational
verification can be formulated as the satisfiability of the following CHC system:

Init1(V ) =⇒ 𝐿1(V ,V ) Init2(V ) =⇒ 𝐿2(V ,V )

𝐿1(V0,V ) ∧GTr1(V ,V
′) =⇒ 𝐿1(V0,V

′) 𝐿2(V0,V ) ∧GTr2(V ,V
′) =⇒ 𝐿2(V0,V

′)

pre(V0,𝑊0) ∧ 𝐿1(V0,V ) ∧ 𝐿2(𝑊0,𝑊 )∧¬post(V ,𝑊 ) =⇒ ⊥
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Here, both loop systems are augmented with an additional variable (at the first
argument of 𝐿{1,2}) to keep track of the initial values of variables.

To solve the problem, formulated as a complex nonlinear CHC, we need to
find individual invariants for both loops, which is difficult [7,25]. Instead, we aim
at simplifying the problem for certain classes of programs. Specifically, it often
can be reduced to safety verification via so called lockstep composition.

Definition 4 (Lockstep-composability). Given two single-loop CHC sys-
tems and a relational precondition pre, a lockstep composition exists if 1) the
following CHC system is satisfiable:

pre(V1,V2) ∧ Init1(V1) ∧ Init2(V2) =⇒ 𝐿1,2(V1,V2)

𝐿1,2(V1,V2) ∧GTr1(V1,V
′
1) ∧GTr2(V2,V

′
2) =⇒ 𝐿1,2(V

′
1,V

′
2)

𝐿1,2(V1,V2) ∧𝐺1(V1) ̸= 𝐺2(V2) =⇒ ⊥

where 𝐿1,2 ∈ 𝑅 is an uninterpreted predicate symbol, an interpretation of which
corresponds to a relational invariant, and 𝐺1 and 𝐺2 represent the loop guards
and 2) the body of the first CHC is satisfiable.

Intuitively, the first CHC constraints the values of input variables to be related
through pre (and also, pre should be consistent with both Init-s.). The second
CHC encodes a synchronous computation of both loops. The third CHC ensures
that inside the product loop both 𝐺1 and 𝐺2 should be true, and outside the
loop both 𝐺1 and 𝐺2 should be false. This implies that the numbers of steps in
two lockstep-composable programs under some pre are the same.

The following lemma lets us reduce a relational verification problem to a
safety verification problem computed after merging the loops and then use ex-
isting invariant generation techniques for solving relational verification problems.
Note that due to the lockstep, both loop guards are always equal, so it is enough
to conjoin the negation of only one of the loop guards to the query.

Lemma 1. Given a relational verification problem over two systems over 𝐿{1,2} ∈
𝑅 representing single loops, pre, and post, if the systems are lockstep-composable
under pre, and the following CHC problem is satisfiable, then post holds at the
end of these loops.

pre(V1,V2) ∧ Init1(V1) ∧ Init2(V2) =⇒ 𝐿1,2(V1,V2)

𝐿1,2(V1,V2) ∧GTr1(V1,V
′
1) ∧GTr2(V2,V

′
2) =⇒ 𝐿1,2(V

′
1,V

′
2)

𝐿1,2(V1,V2) ∧ ¬𝐺1(𝑉1) ∧ ¬post(V1,V2) =⇒ ⊥

The problem of proving program equivalence is a special case of the relational
verification problem where pre = post is a pairwise equality overV1 andV2.

5 Equivalence Checking for Unbalanced Loops

In this section, we present our novel equivalence checking algorithm designed for
the cases when the source and the target programs have different structures. We
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first describe a class of the input CHC systems that we target in Sect. 5.1. We
then provide a procedure to decompose the source such that we can break the
problem of equivalence checking under our limitations into a sequence of smaller
problems in Sect. 5.2. We then finalize our core abstraction-refinement schema
for equivalence checker in Sect. 5.3.

5.1 Input Limitations and Auxiliary Definitions

We support pairs of programs where the source contains a single loop, and the
target possibly contains an arbitrary number of sequential loops. A CHC system
of the latter sort that has 𝑛 loops is called a flat 𝑛-sequence of loops further in
the paper. Here and throughout, we assume that 𝐺𝑆 and 𝐺𝑖 encode the loop
guard for the source loop and the 𝑖th loop in the target, and that Tr𝑆 and Tr 𝑖
encode respective loop bodies without the corresponding guard. Specifically, the
shape of a source program that we consider is defined over a single predicate
symbol 𝑆, and we thus refer to this system as 𝑆-system later in the text:

Init𝑆(V𝑆) =⇒ 𝑆(V𝑆) 𝑆(V𝑆) ∧𝐺𝑆(𝑉𝑆) ∧ Tr𝑆(V𝑆 ,V
′
𝑆) =⇒ 𝑆(V ′

𝑆)

The flat 𝑛-sequence is defined over 𝑛 predicate symbols 𝑇1,. . . ,𝑇𝑛, and is referred
to as 𝑇 -system in the paper:

Init𝑇 (V𝑇 ) =⇒ 𝑇1(V𝑇 ) 𝑇1(V𝑇 ) ∧𝐺1(V𝑇 ) ∧ Tr1(V𝑇 ,V
′
𝑇 ) =⇒ 𝑇1(V

′
𝑇 )

𝑇1(V𝑇 ) ∧ ¬𝐺1(V𝑇 ) =⇒ 𝑇2(V𝑇 ) 𝑇2(V𝑇 ) ∧𝐺2(V𝑇 ) ∧ Tr2(V𝑇 ,V
′
𝑇 ) =⇒ 𝑇2(V

′
𝑇 )

. . .

𝑇𝑛−1(V𝑇 ) ∧ ¬𝐺𝑛−1(V𝑇 ) =⇒ 𝑇𝑛(V𝑇 ) 𝑇𝑛(V𝑇 ) ∧𝐺𝑛(V𝑇 ) ∧ Tr𝑛(V𝑇 ,V
′
𝑇 ) =⇒ 𝑇𝑛(V

′
𝑇 )

There is one fact CHC, in which Init𝑇 represents the initial state of the program.
There are 𝑛 inductive clauses, i.e., for each 𝑖 ∈ [1, 𝑛], the 𝑖th inductive clause has
occurrence of symbol 𝑇𝑖 on both sides of the implication. There are also 𝑛 − 1
non-inductive clauses that encode transitions between adjacent loops, so ¬𝐺𝑖

represents the condition when loop 𝑖 exits.

Example 1. The source in Fig. 1 is encoded to CHCs as follows:

𝑎 = 0 ∧𝑁 = 2*𝑀+1+𝐾 ∧ 𝑏 = 2*𝑀+1 ∧𝑀 ≥ 0 ∧𝐾 ≥ 0 =⇒ 𝑆(𝑎, 𝑏,𝑀,𝐾,𝑁)

𝑆(𝑎, 𝑏,𝑀,𝐾,𝑁) ∧ 𝑎 ̸= 𝑁 ∧ 𝑎′ = 𝑎+1 ∧ 𝑏′ = ite(𝑎 ≥ 𝑏, 𝑏+1, 𝑏) =⇒ 𝑆(𝑎′, 𝑏′,𝑀,𝐾,𝑁)

Example 2. The CHC encoding of the target program in Fig 1 is given as:

𝑐 = 1 ∧ 𝑑 = 2*𝑋 + 1 ∧𝑋 ≥ 0 ∧ 𝑌 ≥ 0 =⇒ 𝑇1(𝑐, 𝑑,𝑋, 𝑌 )

𝑇1(𝑐, 𝑑,𝑋, 𝑌 ) ∧ 𝑐 < 2*𝑋 + 1 ∧ 𝑐′ = 𝑐+ 2 =⇒ 𝑇1(𝑐
′, 𝑑,𝑋, 𝑌 )

𝑇1(𝑐, 𝑑,𝑋, 𝑌 ) ∧ 𝑐 ≥ 2*𝑋 + 1 =⇒ 𝑇2(𝑐, 𝑑,𝑋, 𝑌 )

𝑇2(𝑐, 𝑑,𝑋, 𝑌 ) ∧ 𝑐 ̸= 2*𝑋 + 1 + 𝑌 ∧ 𝑐′ = 𝑐+1 ∧ 𝑑′ = 𝑑+1 =⇒ 𝑇2(𝑐
′, 𝑑′, 𝑋, 𝑌 )

We introduce a concept needed for the presentation in the next section, where
by 𝐴[𝐵/𝐶], we denote an expression with all instances of 𝐶 replaced by 𝐵:

Definition 5. Given a CHC system 𝐻 over predicate symbols 𝐿1, . . . , 𝐿𝑛, an
𝐿𝑖-projection of 𝐻 (denoted 𝐻 |𝑖) is defined as {𝐶[⊤/𝐿𝑗(·)] | 𝐶 ∈ 𝐻, 𝑗 ̸= 𝑖}.
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That is, our projection replaces all applications of all predicate symbols except
of 𝐿𝑖 by true. Clearly, some CHCs then can be simplified to true, and we assume
that they are removed from the projection.

Example 3. Let 𝐻 be a 𝑇 -system from Example 2, then 𝐻 |2 has two CHCs:

𝑐 ≥ 2*𝑋 + 1 =⇒ 𝑇2(𝑐, 𝑑,𝑋, 𝑌 )

𝑇2(𝑐, 𝑑,𝑋, 𝑌 ) ∧ 𝑐 ̸= 2*𝑋 + 1 + 𝑌 ∧ 𝑐′ = 𝑐+1 ∧ 𝑑′ = 𝑑+1 =⇒ 𝑇2(𝑐
′, 𝑑′, 𝑋, 𝑌 )

5.2 Equivalence Checking by Decomposition

Our main insight on checking equivalence of a source loop and a flat 𝑛-sequence is
that if the source breaks into 𝑛 distinct loop-chunks, and if each of these chunks
is equivalent to the corresponding loop from the 𝑛-sequence, then the actual
programs are equivalent too. We thus present a decomposition of the source into
a sequence of 𝑛 new loops that gives us the basis for comparing the two CHC
systems. A decomposition of 𝑆-system into an 𝑛-flat sequence is done by:

1. introducing 𝑛 fresh predicate symbols 𝑆1, . . . , 𝑆𝑛,
2. cloning the inductive CHC 𝑛 times and replacing 𝑆 with 𝑆𝑖 in each clone,
3. creating 𝑛− 1 non-inductive CHCs between 𝑆𝑖 and 𝑆𝑖+1, and
4. introducing additional guard predicates 𝑃1, . . . , 𝑃𝑛−1 to schedule chunks of

iterations of the 𝑆-loop to either of the new 𝑛 loops. To sum up:

Init𝑆(V𝑆) =⇒ 𝑆1(V𝑆)

𝑆1(V𝑆) ∧𝐺𝑆(V𝑆) ∧ 𝑃1(V𝑆) ∧ Tr𝑆(V𝑆 ,V
′
𝑆) =⇒ 𝑆1(V

′
𝑆)

𝑆1(V𝑆) ∧ ¬(𝐺𝑆(V𝑆) ∧ 𝑃1(V𝑆)) =⇒ 𝑆2(V𝑆)

. . .

𝑆𝑛(V𝑆) ∧𝐺𝑆(V𝑆) ∧ Tr𝑆(V𝑆 ,V
′
𝑆) =⇒ 𝑆𝑛(V

′
𝑆)

For any interpretation of 𝑃1, . . . , 𝑃𝑛−1, the CHC system constructed above is
semantically equivalent to the 𝑆-system, for the following three reasons. First,
no matter how many iterations the first 𝑛 − 1 loops conduct, all the remaining
ones will be conducted in the last loop. Second, all 𝑛 loops still use the original
guard 𝐺, and if it is exceeded in some 𝑖th loop, then all the remaining 𝑖+
1th, . . . , 𝑛th loops will be just skipped. Lastly, all these loops perform exactly
the same operations as the original loop since Tr𝑆 is copied to all of them. We
will instantiate all the 𝑃 -predicates on demand in our CounterExample Guided
Abstraction Refinement (CEGAR) loop.

The CEGAR loop for our equivalence checking problem is outlined in Alg. 1.
It begins with decomposing the 𝑆-system into a flat 𝑛-sequence, as defined
above. The 𝑃 -predicates are created from 𝐺𝑖 guards in 𝑇 -system by rewriting
𝑇 -variables to 𝑆-variables, 𝑖 ∈ [1, 𝑛− 1]:

𝑃𝑖(𝑉 )
def
= ∃𝑉 ′.𝐺𝑖(𝑉

′) ∧ pre(𝑉, 𝑉 ′)



Lockstep Composition for Unbalanced Loops 9

Algorithm 1: DecomposeAndCheck(𝑆, 𝑇 , 𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡)

Input: 𝑆-system, 𝑇 -system, relational pre and post-conditions
𝑃𝑟𝑒 = ⟨pre1, pre2, . . . , pre𝑛⟩ and 𝑃𝑜𝑠𝑡 = ⟨post1, post2, . . . , post𝑛⟩

Output: res ∈ ⟨equiv,unknown⟩
1 𝑆′ ← decompose(𝑆, 𝑛);
2 for 𝑖← 1; 𝑖 ≤ 𝑛; 𝑖← 𝑖+1 do
3 𝑆𝑖 ← 𝑆′ |𝑖; 𝑇𝑖 ← 𝑇 |𝑖;
4 while true do
5 aligned ← ⊥; refined1,2 ← ⊥;
6 ST 𝑖 ← getProduct(𝑆𝑖, 𝑇𝑖, pre𝑖);
7 Let Init be the body of the fact CHC in ST 𝑖;
8 res ← checkSAT(Init);
9 if res then

10 ⟨inv , cex ⟩ ← checkSAT(ST 𝑖 ∪ {𝐿 ∧ (𝐺𝑠 ∧ 𝑃𝑖) ̸= 𝐺𝑖 =⇒ ⊥});
11 if ¬res ∨ cex /∈ ∅ then
12 ⟨aligned , 𝑆𝑖⟩ ← alignCHCs(𝑆𝑖, 𝑇𝑖, pre𝑖);
13 if aligned then continue;

14 else
15 ⟨inv , cex ⟩ ← checkSAT(ST 𝑖 ∪ {𝐿 ∧ ¬𝐺𝑖 ∧ ¬𝑝𝑜𝑠𝑡𝑖 =⇒ ⊥});
16 if cex ∈ ∅ then break;

17 ⟨refined1, 𝑆1, . . . , 𝑆𝑖⟩ ← refine(𝑆1, . . . , 𝑆𝑖, cex );
18 ⟨refined2, 𝑇1, . . . , 𝑇𝑖⟩ ← refine(𝑇1, . . . , 𝑇𝑖, cex );
19 if ¬(refined1 ∨ refined2 ∨ aligned) then return unknown;

20 return equiv;

Note that the relational precondition pre is assumed to be a conjunction of
equalities. This gives us two flat 𝑛-sequences, which lets us consider pairs of
loops (line 2) from both systems separately. Each such CHC system is created
by applying the projection from Def. 5. In a sense, this is an abstraction of the
original system since by isolating one loop (say, 𝑖th), we lose the state computed
all the way from the entry to the program by iterating 𝑖 − 1 loops. Aiming to
check equivalence for each pair of projections, the algorithm first figures out
how/if a lockstep-composition is applicable. We write: res ← checkSAT(𝑓𝑙𝑎)
to denote a satisfiability check for a (first order) formula 𝑓𝑙𝑎, and we write:

⟨inv , cex ⟩ ← checkSAT(ST 𝑖 ∪ {𝐿 ∧ . . . =⇒ ⊥})

to denote this check for the CHC-product ST 𝑖 over predicate symbol 𝐿 with
respect to the query written in {. . .}. The check returns either an inductive
invariant (i.e., an interpretation of 𝐿) or a counterexample. Before checking for
lockstep, the compatibility of the initial states needs to be checked, i.e., if the
body of the fact is satisfiable (line 8). If it succeeds, each check of the lockstep-
composability is reduced by Def. 4 to a CHC satisfiability check, and it uses both
guards in the CHC query (line 9). If either the initial-states check or the lockstep
check fails, the algorithm uses a method for alignment of projections discussed
in detail in Sect. 6. If aligned, we continue with the next iteration of the loop,
attempting to prove lockstep composition and equivalence of the projections.
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Algorithm 2: Refine(𝑄1, . . . , 𝑄𝑖, cex )

Input: Set of 𝑖 CHC systems 𝑄1, . . . , 𝑄𝑖 over 𝐿; and counterexample cex
Output: res ∈ ⟨⟨⊥, ·⟩, ⟨⊤, refined systems 𝑄1, . . . , 𝑄𝑖⟩⟩

1 if 𝑖 = 1 then return⟨⊥, ·⟩;
2 while cex /∈ ∅ do
3 ⟨𝑖𝑛𝑣, cex ′⟩ ← checkSAT(𝑄𝑖−1∪{𝐿(𝑉 )∧¬𝐺𝑖−1(V )∧

⋀︀
𝑣∈V

𝑣=cex (𝑣) =⇒⊥});

4 if cex ′ ∈ ∅ then
5 assert(𝑖𝑛𝑣 /∈ ∅);
6 Fact ← {𝐶 ∈ 𝑄𝑖 | 𝐶 has form Init(𝑉 ) =⇒ 𝐿(𝑉 )};
7 𝑄𝑖 ← 𝑄𝑖 ∖ {Fact} ∪ {Init(𝑉 ) ∧ 𝑖𝑛𝑣(𝑉 ) =⇒ 𝐿(𝑉 )};
8 return⟨⊤, 𝑄1, . . . , 𝑄𝑖⟩;
9 else

10 ⟨res, 𝑄1, . . . , 𝑄𝑖−1⟩ ← refine(𝑄1, . . . , 𝑄𝑖−1, cex
′);

11 if ¬res then return⟨⊥, ·⟩;

Example 4. Recall CHC systems defined in Examples 1 and 2. In the first
iteration, Alg. 1 considers the first pair of loops. The initial-states check at line 8
fails, and thus the loops are aligned at line 12 (to be explained in Example 8).

Whenever two CHC systems are in lockstep, the algorithm utilizes Lemma 1
and checks the product system computed for two isolated loops (line 15) for
safety. The success of the check lets the algorithm to continue with the next
pair of loops. Otherwise, we receive a counterexample, which might be spuri-
ous because of the abstraction. Our refinement procedure then searches for a
strengthening of either of the CHC systems (lines 17-18), which is described in
more details in the next subsection. If it cannot refine further using the given
technique, it returns unknown (line 19).

5.3 Refinement

Due to the decomposition presented in the previous section, there could be sen-
sitive information that is available in the earlier parts of the programs, but
not in the later parts. Alg. 2 gives a refinement procedure needed to propagate
useful properties about the programs towards queries. Intuitively, we have to
strengthen our relational preconditions, thus improving the chances to prove the
safety of the 𝑖th CHC product. Recall that in Alg. 1, refinement is invoked for
each counterexample which is technically, an assignment to the variables at the
initial state of either of the programs being composed into the product CHC.

The key idea is to check if the counterexample is spurious by constructing a
scenario in which the 𝑖−1th system can eventually reproduce the values from the
counterexample at the end of its execution (line 3). This is reduced technically
to a satisfiability check of the corresponding CHC system w.r.t. the “negation”
of the counterexample. If it succeeds, then an inductive invariant can be used to
strengthen (line 7) the 𝑖th system. Otherwise, the algorithm might recursively
descend to refining the 𝑖 − 1th system via finding an invariant for the 𝑖 − 2nd
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product, and so on (line 10). For this reason, the algorithm has the while-loop
(line 2) that lets to repeat the satisfiability check for some (already strengthened)
systems, and it continues till the current system has been refined.

Example 5. Continuing with Example 4, in the second iteration of Alg. 1, the
lockstep check1 does not succeed:

𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ∧𝑀 = 𝑋 ∧ 𝑌 = 𝐾 ∧ (𝑎 = 𝑁 ∨ 𝑎 ≥ 2*𝑀 + 1) ∧ 𝑐 ≥ 2*𝑋 + 1 =⇒ 𝐿2(V )

𝐿2(V ) ∧ 𝑎 ̸= 𝑁 ∧ 𝑎′ = 𝑎+ 1 ∧ 𝑏′ = ite(𝑎 ≥ 𝑏, 𝑏+ 1, 𝑏)∧
𝑐 ̸= 2*𝑋 + 1 + 𝑌 ∧ 𝑐′ = 𝑐+ 1 ∧ 𝑑′ = 𝑑+ 1 =⇒ 𝐿2(V

′)

𝐿2(V ) ∧ (𝑎 ̸= 𝑁) ̸= (𝑐 ̸= 2*𝑋 + 1 + 𝑌 ) =⇒ ⊥

For the CHC system above, a counterexample could be cex = {𝑎, 𝑐, 𝑏, 𝑑 ↦→
110,𝑀,𝐾 ↦→ 50, 𝑁 ↦→ 0, 𝑋, 𝑌 ↦→ 50} because we miss that 𝑁 = 2*𝑀 + 1 +𝐾,
hence lockstep is not possible. Alg. 2 then confirms that this counterexample is
spurious by learning this inductive invariant. After adding it to the fact CHC
of 𝑆2 and recomputing the product system ST 2, it becomes satisfiable. We then
add the following query for equivalence check:

𝐿2(V ) ∧ 𝑐 = 2*𝑋 + 1 + 𝑌 ∧ (𝑎 ̸= 𝑐 ∨ 𝑏 ̸= 𝑑 ∨𝑀 ̸= 𝑋 ∨𝐾 ̸= 𝑌 ) =⇒ ⊥

which fails because of missing invariant 𝑏 = 2*𝑀 + 1. After adding it to the fact
CHC of 𝑆2 and recomputing the product CHC system, it becomes satisfiable.

As can be seen from this example, the refinement procedure is beneficial for
both the lockstep-composability and the equivalence checks in Alg. 1, thus the
inner loop in the algorithm can iterate multiple times before terminating with a
positive verdict. We note that inductive invariants are in general tricky for find-
ing. Thus, our approach has essential limitations and cannot prove equivalence
of programs that require complicated (e.g., quantified) inductive invariants.

6 Aligning Unbalanced Loops

In this section, we present an algorithm for creating alignment between two
single-loop CHC systems that have different number of loop iterations. Our
new method of alignment of an 𝑆-projection and a 𝑇 -projection is based on
restructuring the former to become lockstep-composable with the latter. The
algorithm identifies if any iterations of the former have to be extracted and
placed before the loop and if any iterations have to be grouped and performed
at once. These numbers (called alignment bounds in the rest of the section) are
identified if exact loop bounds of both projections are computable.

6.1 Finding the Number of Iterations

We aim first at computing a function that returns the exact number of iterations
of a single loop in terms of input variables, based on the CHC representation.

1 We abbreviate ⟨𝑎,𝑏,𝑀,𝐾,𝑁,𝑐,𝑑,𝑋,𝑌 ⟩ withV , and ⟨𝑎′,𝑏′,𝑀,𝐾,𝑁,𝑐′,𝑑′,𝑋,𝑌 ⟩ withV ′.
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In the technique presented below, the input systems need to have a counter
variable that monotonically increments between two extremes that do not change
in the loop.2 Focusing on a single-loop CHC system with initial states Init and
guarded transition body 𝐺 ∧ Tr where 𝐺 encodes a guard over the variables
at the beginning of the transition, and Tr has no additional guard, we wish to
find the exact number of the iterations of the corresponding loop. In general, for
that, we could consider an augmented CHC system with a fresh decrementing
counter.

Definition 6. The exact number of iterations is an interpretation of the func-
tion symbol N that makes the augmented CHC system satisfiable:

Init(𝑉 ) ∧ 𝑗 = N(𝑉 ) =⇒ 𝐿(𝑉, 𝑗)

𝐿(𝑉, 𝑗) ∧𝐺(𝑉 ) ∧ Tr(𝑉, 𝑉 ′) ∧ 𝑗′ = 𝑗 − 1 =⇒ 𝐿(𝑉 ′, 𝑗′)

𝐿(𝑉, 𝑗) ∧ ¬𝐺(𝑉 ) ∧ 𝑗 ̸= 0 =⇒ ⊥

For an arbitrary loop, finding N is difficult and often not possible (e.g., for
problems with nondeterminism in the loop). However, for some CHC systems
encoding range-based loops, i.e., that already have counters, we can attempt to
synthesize N from the information obtained from syntax of CHCs. Specifically,
we assume that formula Init has the form 𝑖 = S(V )∧Init ′(V , 𝑖) for some variable
𝑖 and some function S, We also assume that the guard of the transition has
the form 𝑖 < F(V ) ∧ 𝐺′(V , 𝑖) for some function F, and Tr has the form 𝑖′ =
𝑖+ D ∧ Tr ′(V , 𝑖,V ′, 𝑖′) for some positive constant D > 0.

Definition 7. A range-based CHC system is the one that has the following form

Init ′(V , 𝑖) ∧ 𝑖 = S(V ) =⇒ 𝑇 (V , 𝑖)

𝑇 (V , 𝑖) ∧ 𝑖 < F(V ) ∧ 𝑖′ = 𝑖+D ∧𝐺′(V , 𝑖) ∧ Tr ′(V , 𝑖,V ′, 𝑖′) =⇒ 𝑇 (V ′, 𝑖′)

such that for some inductive invariant inv the following hold:

Tr ′(V , 𝑖,V ′, 𝑖′) ∧ inv(V , 𝑖) =⇒ S(V ) = S(V ′) (1)

Tr ′(V , 𝑖,V ′, 𝑖′) ∧ inv(V , 𝑖) =⇒ F(V ) = F(V ′) (2)

𝑖 < F(V ) ∧ inv(V , 𝑖) =⇒ 𝐺′(V , 𝑖) (3)

To guarantee soundness of our construction, the constraints in the definition
above ensure that S and F are the tightest bounds for the counter variable 𝑖.
Specifically, (1) and (2) ensure that 𝑖 has the lower and the upper bound that
do not change throughout the execution, and (3) ensures that the loop does
not break before 𝑖 exceeds F(𝑉 ). An invariant inv could in simple cases be just
⊤ but often it needs to bring important information from an initial state to an
arbitrary iteration. For instance, if a loop has two counters with their own upper
and lower bounds, then our analysis can proceed only when we can prove that

2 A similar technique for a decrementing counter is straightforward but omitted for
brevity of presentation.
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either of the counters exceeds its upper bound always faster than another does
so. Our running example makes another use of (3), to ensure that the residual
guard 𝐺′(V , 𝑖) is weaker than 𝑖 < F(V ) strengthened by the invariant.

Example 6. Recall the first loop of the decomposed source of Example 1. It has
the guard 𝑎 ̸= 𝑁∧𝑎 < 2*𝑀+1. We can find invariant 𝑁 = 2*𝑀+1+𝐾∧𝐾 ≥ 0.
Clearly, since 𝑁 = 2*𝑀 + 1 + 𝐾 ∧𝐾 ≥ 0 ∧ 𝑎 < 2*𝑀 + 1 =⇒ 𝑎 ̸= 𝑁 , then

F(𝑀)
def
= 2*𝑀 + 1 satisfies (3). With no invariant, 𝑎 < 2*𝑀 + 1 ≠⇒ 𝑎 ̸= 𝑁 .

Lemma 2. An integer function N computes the exact number of iterations for
a range-based CHC system:

N
def
= (F − S) div D + (if ((F − S) mod D = 0) then 0 else 1)

In practice, the approach is limited to the invariant generation capabilities.
If a sufficient invariant for Def. 7 (and thus, Lemma 2) is found, the approach
proceeds to align loops. Otherwise, it returns Unknown.

6.2 Identifying Unrolling Depths

If the numbers of iterations can be computed, the approach proceeds to finding
alignment bounds ℓ and 𝑚 that define respectively the number of iterations to be
extracted and placed before the loop and the number of iterations to be grouped
and performed at once in the loop. These bounds are obtained from the following
ingredients:

1. functions N𝑆 and N𝑇 to compute the numbers of iterations of the 𝑆-projection
and the 𝑇 -projection, respectively;

2. fresh integer variable 𝑣ℓ to represent (a yet unknown) number of iterations
to be moved out of the loop in the 𝑆-projection,

3. fresh integer variable 𝑣𝑚 to represent (a yet unknown) number of iterations
to be grouped inside the loop for the 𝑆-projection.

Values ℓ and 𝑚 can be directly taken from a satisfying assignment to variables
𝑣ℓ and 𝑣𝑚 for the following SMT query. Intuitively, it equates the total numbers
of iterations in the 𝑆-projection and the 𝑇 -projection:

𝑄ST
def
= ∃𝑣ℓ, 𝑣𝑚 .∀V𝑆 ,V𝑇 . (𝑣ℓ ≥ 0 ∧ 𝑣𝑚 > 0) ∧ pre(V𝑆 ,V𝑇 ) =⇒

N𝑆(V𝑆)− 𝑣ℓ = 𝑣𝑚 *N𝑇 (V𝑇 )

Thus, the SMT formula has the form of implication: if pre holds, then the
number of iterations of one program can be expressed over the number of iter-

ations of another program (and vice versa). If M |= 𝑄ST , then ℓ
def
= M(𝑣ℓ), and

𝑚
def
= M(𝑣𝑚).

Example 7. For the first projections in the decomposed source and the target,
we generate the following (simplified) SMT query:

𝑄ST = ∃𝑣ℓ, 𝑣𝑚 . (𝑣ℓ ≥ 0 ∧ 𝑣𝑚 > 0) ∧𝑀 = 𝑋 =⇒ 2*𝑀 + 1− 𝑣ℓ = 𝑣𝑚 *𝑋

and the solver generates model M = {𝑣ℓ ↦→ 1, 𝑣𝑚 ↦→ 2}, and ℓ = 1, and 𝑚 = 2.
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6.3 Rearrangement of the Source Projection

Finally, we present the restructuring of the 𝑆-projection based on two alignment
bounds, ℓ and 𝑚, computed in the previous section. The former represents the
number of iterations to be moved before the loop, and the latter represents the
number of iterations to make a batch inside the loop.3 We assume that an 𝑆-
projection is defined using the following two CHCs over a single predicate symbol
𝐿: Init𝑆(V ) =⇒ 𝐿(V ) and 𝐿(V ) ∧GTr(V ,V ′) =⇒ 𝐿(V ′).

We define an auxiliary predicate 𝑈(𝑢,V ,V ′) that allows us to create an un-
rolling of arbitrary length: if 𝑢 = 0, the result is the identity formula, otherwise

we create 𝑢 unrollings of the system (GTr𝑆 conjoined 𝑢 times), then define Init
(ℓ)
𝑆

and GTr
(𝑚)
𝑆 , as follows:

𝑈(𝑢,V ,V ′)
def
= ite(𝑢 = 0, V ′ =V ,

∃V ′′, . . . ,V (𝑢) .GTr𝑆(V ,V
′′) ∧ . . . ∧GTr𝑆(V

(𝑢),V ′))

Init
(ℓ)
𝑆 (V ′)

def
= ∃V . Init𝑆(V ) ∧ 𝑈(ℓ,V ,V ′)

GTr
(𝑚)
𝑆 (V ,V ′)

def
= 𝑈(𝑚,V ,V ′)

Finally, we are ready to define the aligned CHC product used in Alg. 1 (align-
CHCs(𝑆, 𝑇, pre)).

Definition 8. Let 𝑆 and 𝑇 be two range-based CHC systems, as defined in
Def. 7. Let M |= 𝑄ST (N𝑆 ,N𝑇 , 𝑣ℓ, 𝑣𝑚, pre), as defined in Sect. 6.2. Then, the
rearranged system 𝑆𝑅 is defined as follows:

Init
(M(𝑣ℓ))
𝑆 (V ) =⇒ 𝐿(V ) 𝐿(V ) ∧GTr

(M(𝑣𝑚))
𝑆 (V ,V ′) =⇒ 𝐿(V ′)

Note that 𝑆𝑅 and 𝑇 are in lockstep, and 𝑆𝑅 is equivalent to 𝑆, both by con-
struction. Thus, after such alignment, our Alg. 1 will proceed to checking the
equivalence of 𝑆 and 𝑇 by means of checking equivalence of 𝑆𝑅 and 𝑇 .

Example 8. For the first projections in the decomposed source and the target,
the lockstep check does not succeed because the body of the fact is unsatisfiable:

𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ∧𝑀 = 𝑋 ∧ 𝑌 = 𝐾 ∧ 𝑎 = 0 ∧𝑁 = 2*𝑀+1+𝐾 ∧ 𝑏 = 2*𝑀+1 ∧𝑀 ≥ 0∧
𝐾 ≥ 0 ∧ 𝑐 = 1 ∧ 𝑑 = 2*𝑋+1 ∧𝑋 ≥ 0 ∧ 𝑌 ≥ 0 =⇒ 𝐿1(𝑎, 𝑏,𝑀,𝐾,𝑁, 𝑐, 𝑑,𝑋, 𝑌 )

With the bounds computed in Example 7, we compute the following product:

𝑎 = 0 ∧𝑁 = 2*𝑀 + 1 +𝐾∧ 𝑏 = 2*𝑀 + 1 ∧𝑀 ≥ 0 ∧𝐾 ≥ 0∧
𝑎 ̸= 𝑁 ∧ 𝑎 < 2*𝑀 + 1 ∧ 𝑎′ = 𝑎+1 ∧ 𝑏′ = ite(𝑎 ≥ 𝑏, 𝑏+1, 𝑏)∧

𝑐 = 1 ∧ 𝑑 = 2*𝑋 + 1 ∧𝑋 ≥ 0 ∧ 𝑌 ≥ 0∧ 𝑎′ = 𝑐 ∧ 𝑏′ = 𝑑 ∧𝑀 = 𝑋 ∧ 𝑌 = 𝐾

=⇒ 𝐿1(𝑎
′, 𝑏′,𝑀,𝐾,𝑁, 𝑐, 𝑑,𝑋, 𝑌 )

𝐿1(𝑎, 𝑏,𝑀,𝐾,𝑁, 𝑐, 𝑑,𝑋, 𝑌 ) ∧ 𝑎 ̸= 𝑁 ∧ 𝑎 < 2*𝑀+1 ∧ 𝑎′= 𝑎+1 ∧ 𝑏′= ite(𝑎 ≥ 𝑏, 𝑏+1, 𝑏)

𝑎′ ̸= 𝑁 ∧ 𝑎′ < 2*𝑀+1∧𝑎′′= 𝑎′+1 ∧ 𝑏′′= ite(𝑎′ ≥ 𝑏′, 𝑏′+1, 𝑏′)

𝑐 < 2*𝑋 + 1 ∧ 𝑐′ = 𝑐+ 2 =⇒ 𝐿1(𝑎
′′, 𝑏′′,𝑀,𝐾,𝑁, 𝑐′, 𝑑,𝑋, 𝑌 )

3 In practice, it could also be required to move some iterations to after the loop (and
our implementation supports it). Then, we split 𝑚 into 𝑚1 +𝑚2 heuristically and
move 𝑚1 iterations to before the loop, and 𝑚2 to after the loop.
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7 Evaluation

We have implemented the algorithm for equivalence checking in a tool called
Alien4 on top of the invariant synthesizer FreqHorn that supports integers
and arrays (over integers) [10]. Alien takes as input an 𝑆-system and a 𝑇 -
system, automatically decomposes the former, creates a sequence of product
programs, and delegates the inductive invariant generation to FreqHorn. For
solving SMT queries, it uses Z3 [8]. We considered two benchmark suites:

– Test Suite of Vectorization Compilers (TSVC) [23], preprocessed in the way
suggested by [5]. TSVC has 152 benchmarks, and 48 of which are either
not vectorizable, contain floating point operations, intrinsic functions, or
need some extra processing like loop rerolling. We thus experimented on a
set of remaining 104 remaining benchmarks. We check equivalence of these
programs w.r.t. their optimized versions, both translated to CHCs.

– A subset of 24 multi-phase benchmarks taken from [4,31] in which the phases
can be “extracted” from the loops. The optimized versions of these bench-
marks have more than one loop, thus necessitating to use our decomposition.

We considered the state-of-the-art tools LLREVE [16], an equivalence checker
by Churchill et al. [5], Counter [14], and CHC-Product [25]. However, only
Counter was able to solve some of our benchmarks in reasanoble time: Churchill
et al. report that the minimum time any benchmark takes to solve is around 2
hours, and it was largely outperformed by Counter in [14].

We thus evaluate our Alien against Counter for both benchmark suites. To
run Counter on a pair of manually provided C programs5, it was configured
to apply no optimization to any of the programs. For TSVC benchmarks, we
manually pass an unrolling factor 8 required by each benchmark (compare to
our approach in which the tool automatically identifies this number). For Alien,
we provide two CHC encodings of the program before and after the optimization.
We specified a timeout of 15 minutes for both tools.

Alien solved 103 out of 104 TSVC benchmarks. Alien times out on the
s279 benchmark because its invariant synthesizer struggles with finding a helper
invariant. Benchmark s113 requires the approach to automatically synthesize an
extra lemma (i.e., cnt>0), in addition to the variable equalities. Alien took 3.7
seconds to solve a benchmark on average: from 1.3 in the best case to 27.4 in
the worst case. Among all, 26 (resp. 2) benchmarks require moving iterations
before (resp. after) the loop. Counter proved equivalence for 15 benchmarks,
it failed to prove equivalence for 9 benchmarks, while the rest (81 benchmarks)
timed-out. Its minimum running time is 50.2 seconds, maximum 704 seconds
and average 117.4 seconds.

4 The tool and benchmarks are available at https://github.com/a-hamza-r/aeval/
tree/equiv-check.

5 We consulted https://github.com/compilerai/counter to run tool in our setting. Note
that in their paper, the authors evaluated Counter only on compiler-optimized
targets. Our case study is different, and it shows that checking equivalence between
two arbitrary programs is a harder problem for Counter.

https://github.com/a-hamza-r/aeval/tree/equiv-check
https://github.com/a-hamza-r/aeval/tree/equiv-check
https://github.com/compilerai/counter
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Fig. 3: Cactus plots (left: for TSVC benchmarks, right: for multi-phase benchmarks)
comparing running times of ALIEN (blue line) and Counter (orange line).

For 24 multi-phase benchmarks, ALIEN proved all of them. Counter proved
equivalence for 5 benchmarks, it failed to prove equivalence for 3 benchmarks,
while the remaining benchmarks timed-out. The minimum, maximum and av-
erage times are 3.2, 32.6, and 11.5 seconds, respectively for ALIEN; and 43.8,
106.9, and 56.2 seconds respectively for Counter.

A larger picture on the experimental results is given in Fig. 3. The horizontal
axes in the cactus plots represent time limit (logarithmic scale), and the vertical
axes represent the numbers of benchmarks (linear scale) solved within the cor-
responding time limits. Intuitively, the plots demonstrate that Counter is an
order of magnitude slower than our novel approach.

8 Conclusion

We have presented a novel CEGAR-based approach for checking equivalence
of two programs containing possibly different number of loops. The technique
involves automatic decomposition of one of the programs to match the loops
structure of the other, so that the task of equivalence checking of two given
programs can be split into a sequence of tasks of equivalence checking of single
loops, each of which is solved easier. Since such decomposition comes at a cost of
possible loss of information, we developed a refinement schema that is intuitively
based on propagation of lemmas on demand. Moreover, in case we deal with
loops with provably-different number of iterations, our technique automatically
rearranges the iterations in the loops making them lockstep-composable for each
subtask. We developed the Alien tool and empirically demonstrated that our
approach to equivalence checking is more efficient than state-of-the-art on two
classes of public benchmarks. In future, it would be interesting to extend these
techniques to more general program structures, e.g., where both programs have
multiple and possibly nested loops.

Acknowledgments The work is supported in parts by a gift from Amazon Web
Services and by the National Science Foundation grant 2106949.



Lockstep Composition for Unbalanced Loops 17

References

1. J. D. Backes, S. Person, N. Rungta, and O. Tkachuk. Regression verification using
impact summaries. In SPIN, volume 7976 of LNCS, pages 99–116. Springer, 2013.

2. S. Badihi, F. Akinotcho, Y. Li, and J. Rubin. Ardiff: scaling program equivalence
checking via iterative abstraction and refinement of common code. In ESEC/FSE,
pages 13–24. ACM, 2020.

3. G. Barthe, J. M. Crespo, and C. Kunz. Relational verification using product
programs. In FM, volume 6664 of LNCS, pages 200–214. Springer, 2011.

4. M. Blicha, G. Fedyukovich, A. E. J. Hyvärinen, and N. Sharygina. Transition Power
Abstractions for Deep Counterexample Detection. In D. Fisman and G. Rosu, edi-
tors, Tools and Algorithms for the Construction and Analysis of Systems. Springer
Berlin Heidelberg, 2022.

5. B. R. Churchill, O. Padon, R. Sharma, and A. Aiken. Semantic program alignment
for equivalence checking. In PLDI, pages 1027–1040. ACM, 2019.

6. B. R. Churchill, R. Sharma, J. F. Bastien, and A. Aiken. Sound loop superopti-
mization for google native client. In ASPLOS, pages 313–326. ACM, 2017.

7. E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Relational Verification
Through Horn Clause Transformation. In SAS, volume 9837 of LNCS, pages 147–
169. Springer, 2016.

8. L. M. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In TACAS, volume
4963 of LNCS, pages 337–340. Springer, 2008.

9. S. Dutta, D. Sarkar, A. Rawat, and K. Singh. Validation of loop parallelization
and loop vectorization transformations. In ENASE, pages 195–202. SciTePress,
2016.

10. G. Fedyukovich, S. Prabhu, K. Madhukar, and A. Gupta. Quantified Invariants via
Syntax-Guided Synthesis. In CAV, Part I, volume 11561 of LNCS, pages 259–277.
Springer, 2019.

11. D. Felsing, S. Grebing, V. Klebanov, P. Rümmer, and M. Ulbrich. Automating
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